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It is shown that each feasible point of a positive semidefinite linear *

complementarity problem which is not a solution of the problem provides simple I;-,:ijf-_;{':‘f'

numerical bounds for some or all components of all solution vectors. Conse- P

quently each pair of primal-dual feasible points of a l1inear program which TP

are not optimal provide simple numerical bounds for some or all components of ::";:4-

all primal-dual solution vectors. For example each feasible point, that is ;1;332"_'-'.-

A A B AN

(2,W) 20, of the linear complementarity problem w=Mz+q>0, 220, 2'w=0, -'-‘h- d

where M is positive semidefinite, provides the following simple bound for any RICA Y

solution Z of the linear complementarity problem: O

-:.-:?.?..

I 2, <2min i, RN

fel -e " .

where I = {i|§;>0}. If W>0 then this inequality provides a bound on the ’;’.-u"
- A A AN

1-norm ||z||1 of any solution point. Similarly each feasible point (X,y)>0 ::,‘,T.:.'_'_‘,

of the primal linear program min cTx subject to y = Ax - b >0, x > 0, and .’.'-.'_:?:C':;"
each feasible point (,0)>0 of the dual linear program max blu subject to e

vs -ATu +¢20,u>0, provide the following simple bounds for any primal ::::-;::-I

- - e e e

optimal solution (X,y) and any dual optimal solution (u,v): RNy

:‘_x‘:\{-\

- Ta TAa P - Ta Ta . A '.-23::.“{"

I % <(c'%-b'0)/min Vieg® ) u; < (c'X-b'0)/min §, o

ied iel ACROACS

:-.’\"\::

where J= {i|9i>0} and I={i|§;>0}. If >0 we have a bound on |IX]|;, and j".;;-';::'t-

if ¥>0 we have a bound on ||ﬁl|.,. In addition we show that the existence ;::I::j:;\:'f

of such numerical bounds is ~ot only sufficient but is also necessary for the - ‘;&‘;

boundedness of solution vector components for both the 1inear complementarity Z;-;I-_::’:s:

problem and the dual linear programs. “;.::\

."\,.:’_.
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SIGNIFICANCE AND EXPLANATION

urprisingly simple bounds are given for solutions of fundamental
} constrained optimization problems such as linear and convex quadratic
programs. It is shown that every nonoptimal primal-dugi feasible point
carries within it simple numerical information which bounds some or
all components of all solution vectors. The results given permit one

to compute bounds without even solving the optimization problems.
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SIMPLE COMPUTABLE BOUNDS FOR SOLUTIONS
OF LINEAR COMPLEMENTARITY PROBLEMS
AND LINEAR PROGRAMS

0. L. Mangasarian

1. Introduction
The linear compliementarity problem of finding a (z,w) in the

2k-dimensional real Euclidean space such that

(1.1) w-Mz+q.>_o,z30,sz=o

where M is a given kxk real matrix, q is a given kx1 real vector

k
and sz denotes the scalar product Z ZyWy s is a fundamental problem
i=]

of mathematical programming which includes linear and quadratic programming
problems, bimatrix games [1] and free boundary problems [2]. An important
question of both theoretical and practical interest is the boundedness of
the solution set of (1.1) which already has received attention in [8,3,6]
in the form of necessary and/or sufficient conditions for this boundedness.
In this work we provide simple numerical bounds for some or all components
of any solution vector when M is positive semidefinite. In particular we
show that each feasible point (Z,W), that is (Z,W) > 0, which is not

a solution of (1.1), contains information on the magnitude of some or all
components of all solution points. For example Theorem 2.2 provides the
following simple bounds for any solution (Z,w) of (1.1) in terms of any

feasible point (2,4) when M is positive semidefinite

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based on work sponsored by National Science Foundation
Grant MCS-8200632.
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IIEIILI iiTG/ min W, _;
(.2) 15,01, < 2%/ min 2,
" Izl < 2%/ min @y 03, )
T where [ = {i[v’ii >0}, J = {i[2; >0}, EI:= iieJ and ll-”1 denotes the
M 1-norm. Note that if either I or J is empty then (2,W) is a solution
: of the linear complementarity problem (1.1). On the other hand if W > 0,
then Z; = z and (1.2) provides a bound on the 1-norm Izll; of any solu-
», tion (Z,w) of (1.1). Similarly if 2 >0, then v'vJ =w and (1.2)
d provides a bound on |[|w|[,. Theorem 2.2 also provides a necessary and
? sufficient characterization for the boundedness of il’ v'vJ and (il,iJ)
‘;-.r for I, Jc {1,...,k} where (Z,w) is any solution of (1.1) and M fis
‘; positive semidefinite. In particular it shows that EI is bounded if and
‘;,,,* only if there exists a feasible point (2,§) > 0 such that QI > 03 v'vJ is
£ bounded if and only if there exists a feasible point (Z,w) > 0 such that

; QJ >0; and (iI,GJ) is bounded if and only if there exists a feasible

point (%,W) > 0 such that (EJ,G_I) > 0. Theorem 2.2 can be used, as in

a4 Algorithm 2.6, to determine which components if any of the solution set are
:. bounded, without solving the linear complementarity problem (1.1). Theorem
o
2e! 2.2 also provides necessary conditions for the boundedness of solution com-
A ponents of (1.1) when M is copositive plus, that is M satisfying (1.5)-
‘,> (1.6) below. In Theorem 2.8 we give bounds for the unique solution of the
‘3 positive definite linear complementarity problem.
¢
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Because a 1inear programming problem is a special case of the linear
complementarity problem [1], the bounds of Section 2 can be used to obtain

bounds for solutions of the dual linear programs

(1.3a) min c'x s.t. y=Ax-b20, x>0

(1.3b) max blu s.t. v=-Alu+c20,u20

where A 1is an mxn real matrix, ¢ and b are nx1 and mx1 real
vectors respectively. In [7] Robinson and in [5] this author both gave
bounds for solutions of linear programs which involved a constant which
was difficult to evaluate in general. By contrast in Section 3 we provide
bounds for solutions of (1.3) which involve no constants or parameters.
For example Theorem 3.1 provides the following simple bounds for any solu-
tion (X,y)- (u,v) of the dual linear programs (1.3) in terms of any pair

(X,¥) - (G,¢) of primal-dual feasible points:

> TA TA A
||le ly £ (c'%-b ) /min vieJ1

ia

- T . Ta n
llyLlII‘ (c'%-b'a)/min "1511

ia

leJI.yI]lll (c'x-b u)/min {vjeJ]’ “iel1}

(1.4)

Ia

- Ta Ta
l|u12||1 (c'k-b u)/min ymz

- Ta Ta A
IIVJZII-, < (c'x-b u)/min xier
- - TA TA A A

fluy »¥, lly £ (c'%-b'd)/min {y, . , X, .}

where J, = “Wi >0}, Jp = {i|§1>0}. I = {ilt'ii >0} and I, = {il9;>0}.
The bounds (1.4) show that every pair of primal-dual feasible points which

are not optimal (that is at least ¥ # 0 or ¥ # 0) can provide some
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information on the size of the solution set of the dual linear programs
(1.3). Note that if either I,uJ, or J;ul, is empty then (%,§) - (4,V)
is optimal. If on the other hand ¥ > 0, then §J1 =% and (1.4)
provides a bound on the 1-norm ||)'(||.I of any solution (X,y) of (1.3a).
Similarly if ¥ > 0, then ﬁlz = u and (1.4) provides a bound on the
l1-norm [ju]|; of any solution (d,v) of (1.3b). In Theorem 3.4 we con-
sider a nonsymmetric dual 1inear programming pair and provide numerical
bounds for its solution set.

We describe briefly now our notation. A1l vectors will be column
vectors unless transposed to a row vector by a superscript T. For a vector
x in the n-dimensional Euclidean space R", ||x|| will denote an arbitrary

1
n -

but fixed norm and llxllp will denote the p-norm }lx”pzs (_Z1 Ixil")p
1=

where 1 <p <= and [[x[[:= max [x,|. For an mxn real matrix A,
1<i<n

A; denotes the ith row and A., denotes the jth column, while Ill\llp

i
denotes the matrix norm subordinate to the vector norm Il-llp. that is

||A||p = II:‘IaI:ﬂ ||Ax||p. The consistency condition ||Ax||p < ||A||p ||x||p
follows immediately from this definition of a matrix norm. For a subset

Jc {1,...,n}, x; or Xied? will denote those components X5 of the vector
x in R" such that ied. Similarly for Ic{l,...,m}, A; will denote
those rows Ai of A such that ielI, while A.J will denote those
columns A'j of A such that jedJ. A vector of ones in any real finite
dimensional Euclidean space will be denoted by e. A kxk real (not

necessarily symmetric) matrix M is said to be copositive [1] if

(1.5) z_>_0~zTMz_>,0
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M is said to be copositive plus [1] if it is copositive and

T

(1.6) 2>0, 2Mz = 0= (M+M' )z = 0

XA,

£

A kxk real (not necessarily symmetric) matrix M is said to be positive
semidefinite (definite) if

A A

ZMz > 0 (>0) forall z 40

L7

Note that a positive definite matrix is also positive semidefnite, while

a positive semidefnite matrix is also a copositive plus matrix.
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2. Bounds for Solutions of Positive Semidefinite Linear Complementarity

Problems

We begin by a simple but useful identity.

2.1 Lemma Llet M be a kxk real matrix and let q be a kx1 real
vector. Then for any z and % in RX such that Z'(MZ+q) = 0 it
follows that

(2.1) ZT(Mz+q) a ET(Mz+q) + zT(Mi+q) + (z-E)TM(z-i)
Proof By direct algebraic verification. 0

Before establishing the principal result of this section, we need to

define some sets. Let I and J be subsets of {1,2,...,k}. Define

(7]

:= {(2,w)]z220, w=Mz+q>0}

= {(2,w)]|(2,w) €S, 27w = 0}

wni

15" {(z,w)|(z,w) ¢S, (zI, wJ) >0}

§IJ:' {(zI,wJ)l(z,w) €S}
(2.2)
2z {(z,w)|(z,w) €S, z; >0}
Z;:» (z;](2,w) €8}, Z:= {z]|(2,w) € §}
Wpis {(z,w)|(z,w) €S, wy > 0}

ﬁ1:= {wll(z,w)eg}, Wi= {w|(z,w) e S}

With these definitions it is possible to characterize the boundedness of
solutions of linear complementarity problems in terms of simple numerical

bounds as follows.
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2.2 Theorem Let M be a kxk copositive plus matrix, let S #¢ and
let I and J be subsets of {1,2,...,k}. Then

(a) Wy o™ iI bounded

(b) Z, ¢ -iI bounded

(c) Sy #¢ =5, bounded
If in additifon M {s positive semidefinite then

(a') (1) W, # ¢ = (i1) 21 bounded *= (111) /W, # ¢ and
12, < 2%/min &,

vil € 21, Y(Z,W) €W,

(b') (1) Z; # ¢ *= (i1) ﬁI bounded *= (§11) Z,#¢ and
- ATA ~
IIMIIL| < 2'dfmin 2ol
Vileil, '(E’Q)E ZI

c') (1) Sy # & = (11) 5 bounded *= (ii1) /S, # ¢ and

Ifl < 2T/min (3 g0, )

w
J'
V(2[.9)) € 5,00 V(2,@) €S,

Proof First by Lemke's algorithm [1], it follows that S £ ¢ since S#£O.

(a) We shall prove the contrapositive implication.
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3

Wy =¢*=Mz+q20, 220, Mz+qp >0 has no solution

% T ur

=Mug0,u20,0¢ | ;)20 has solution

kX cqu

:’i

& (By Motzkin's theorem of the alternative [4])
22 - Ny $0,u20, un < 0 has solution, or

g

3 Mu <0, u >0, qlu=0,0¢ up 20 has solution

N

' - Ny £0,u 20, un =0, 0 #u; 20 has solution

B (un < 0 alternative excluded by S # ¢)
,4.1

LY = uMu =0, Mu <0, u20,qu=004u 20 hass tiun
b

3 (By copositivit af M)

My = My 20, u >0, un =0, 0fu; 20 has solut .o

f‘- s 2?

(By copositivity plus of M)

-7+ el for any (3,W) €S, any A >0 and u>0,

Mu--MTugo,un=0,0fu130

B

*:f - 21 unbounded.
K<
(b) We again prove the contrapositive implication.
L Iy=¢*=*Mz+q20,220, z; >0 has no solution
A
£ T (W),
Mu<0,u>0,0#1 7 < 0 has solution
qu

(By Motzkin's theorem)
=Mu<0,uz0 qu=00¢(Mu) <0 has solution

(Alternative un < 0 is excluded by S # ¢)

=My = -Mu20, u20, qu=0, 04 (Mu);=-(Mu); 20 has solution

&

(By copositivity plus of M)

Aoy

=Z+lel forany (Z,w)eS, any A >0 and u>0, i

Mu = -MTu >0, un-O. 0 # (Mu)Igo j

—
o o
4 %

- b.ll unbounded.
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I bounded and ﬁJ bounded. By (a) above it

follows that Wy # ¢, and by (b) above it follows that ZJ # 0. Let

§IJ bounded implies z

('z‘,u'i)ewI and let (i,ﬁ)eZJ. Then

Z4Z Wi .
(—r' '2—)‘ 237 ¥ = Sur

The implication (i)*=(ii) follows from (a) above. The implication
(1) *(ii1) is evident. We now establish the implication (i)=(iii)
by means of Lemma 2.1. Let (Z,w)e Wy and ile il' Then by Lemma 2.1

and the positive semidefiniteness of M we have

274 = 3T(M2+q) 2 2 (M2 +q) + 2T (ME+q) 2 E(ME+q),

> "21”1 min W, |
Hence

- ATA N ~
Izl < 2 w/min W

The implication (i)« (ii) follows from (b) above. The implication
(i) *=(iii) is evident. We now establish {i)=(iii). Let (Z,W)e Z,
and let W, eﬁl. By Lemma 2.1 and the positive semidefiniteness of

M we have

Hence

Again the implication (i)*(ii) follows from (c) above. The implica-

tion (if)*=(iii) is evident. To establish (i)=(iii), let (E.Q)esJI
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and let (iI.v'cJ) e§m. Then by Lemma 2.1 and the positive semidefi-

niteness of M we have

TA T~

A - Fy =T al= z fas A
ZW2zw 2w R 2w 2 i;"l min {z, ,,W; ;}
Hence
la]l < 2%8/min 12, 58y 0 0
WJ 1 et ied’ Tiel

2.3 Remark The sets I and J of Theorem 2.2 above may be taken as single-

tons in which case the bounds in (a'), (b') and (c') simplify respectively to

~Ni

i_<“zw/w1. for z,eZ;, (Z;,W;)eW,

£
iIa

i zw/zi for w;el,, (Zi.wi)ezi

- - ATA . A~ ~ - - - A A
2, Wy <2 w/min {zj,wi} for (Zi'"j) €Sy (Z,W) €5

2.4 Remark The positive semidefiniteness assumption plays an indispensible
role in obtaining the numerical bounds of parts (a’'), (b') and (c’) of
Theorem 2.2. It is unlikely that such numerical bounds can be obtained for
the copositive plus case. Whether the forward implications of parts (a),

(b) and (c) of Theorem 2.2 also hold under a copositive plus assumption is

an open question. However when I = {1,2,...,k}, the forward assumption

{., of (a) does hold for a copositive plus M. See Theorem 2, (ii)*=(ix) [6].
t'::' . The following corollary which is a direct consequence of part (a’) of
»,:J- Theorem 2.2 provides a practical method for determining which components of
2:"' the solution set are bounded and which are not without solving the linear
LA

[ 4
Yo
. L

2.

complementarity problem (1.1).

2.5 Corollary Let M be a kxk positive semidefinite matrix and let

&
.‘f::: S # ¢. There exists a partition Iul of {1,2,...,k} such that
’E-. P

Ty

\'ﬁ\‘!ﬁ‘\'\\"- - -

’ o T T T T R R NP, o e e e e e e - . _

A "_,‘v."'s..'f-.’\ e N L e L e e S e el e e e e T T L

0N G S R S s LR T . R T T T ‘i




(2.3) 21 is bounded, iL is unbounded

or equivalently such that
(2.4) W Fo, W =¢

6ne way to determine the partition Iul of the above corollary for
a given Tinear complementarity problem is to solve at most N(I) linear
programs, where N(I) is the number of elements in I, as in the follow-
ing Algorithm 2.6. This algorithm determines the partition Iul of
{1,2,...,k} for a positive semidefinite linear complementarity problem
(1.1) such that 21 is bounded and iL is unbounded, by determining W,
such that ”I #¢ and HL such that "L = ¢, The algorithm which does

not solve the linear complementarity problem, solves at most N(I) (but

potentially considerably fewer) 1inear programs.

2.6 Algorithm (Determination of Iul = {1,2,...,k} such that ZI is

bounded, Z, is unbounded, for a positive semidefinite M)

L
Step 0: Set j=0,I,=¢,L,= 1,2,...,k}

Step 1: Solve the LP: max ] (Mz+q)J s.t. M2+q2>0,2>0
jCLJ

If LP is infeasible, LCP (1.1) is infeasible. Stop.
If LP max = 0, set I = Iy, L = {1,2,....k}\11. Stop.

If 0 < LP max < », set z(A) = Z where Z is an LP solution.

If LP max + o, set z(A) = Z + Ad where Z + Ad is feasible

forall A>0 and [ nj& > 0.
jELJ

Set Iy, = Tyu{i|Mz(2)+q;>0, A+=)
Ly = 020k,




Step 2: J+1~+

Step 3: Go to Step 1.

2.7 Remark The LP solutions of Algorithm 2.6 can be used in conjunction 1
with Theorem 2.2 (a’iii) to give numerical bounds for i|i1||1, il‘il’
When M is positive definite, additional simple bounds can be

obtained as follows.

2.8 Theorem Let M be a kxk positive definite matrix with a > 0 being

T
the smallest eigenvalue of ”—Z—L and 8 > 0 the smallest eigenvalue of
-1 -1.T

-"—%"—-)—. Then the unique solution (Z,w) of the linear complementarity
(1.1) is bounded by

(2.50)  max {0, N3], - (/)™ < [1El, < U2, + GTfa)

(2.5b)  max (0, [lall, - (A"2/8)" < lIwll, < §ll, + (372/8)®

for any feasible 2 >0, w=MZ +q2>0.

Proof By Lemma 2.1 we have that

38 > (3-3)

Hence

- ~ A - ~ ATA
1211, < N2l + N2-2l1, < N30, + 2T/

which gives the second inequality of (2.5a). The first inequality of (2.5a)

follows from

A - A - - ATA k
- +
I2l, < W2l + I2-2l1, < 2l + (26/a)

......
.......

PR
-----
..........
......
.....



Yo -13-

To obtain (2.5b) note first that M is nonsingular, for if it were
i‘-‘Z ’ singular then Mz = 0 for some 2z # 0 and consequently zTMz = 0 which
<
3 contradicts the positive definiteness of M. Furthermore for 0 # yeRk,

we have z = M']y #£0 and

¥ yT 1y . 2 MM Mz = 2'MTz = 2Mz > 0

s

Hence M'] is positive definite. For a nonsingular M the linear comple-

mentarity problem (1.1) is equivalent to

1 1 T

qQ, w20, wz=0

o LA

(2.6) zZ= M 'w-N

'el

Hence (2.5a) of this theorem applied to (2.6) yields (2.5b). 0

N
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3. Bounds for Solutions of Linear Programs

We begin this section with some results which are direct consequences
of Section 2. These results follow by considering the patr of dual linear
programs (1.3) as a linear complementarity problem with a skew-symmetric,
and hence, positive semidefinite matrix. Later on in this section we shall
obtain bounds for solutions of linear programs with explicit equality
constraints.

By considering the dual linear programs (1.3) as a 1inear complemen-

tarity problem [1] defined by (1.1) and

on e

the following theorem is a direct consequence of Theorem 2.2.

3.1 Theorem Assume that the dual 1inear programs (1.3) are both feasible
and hence both solvable. Let caret variables (X,y), (i,¢) denote primal

and dual feasible vectors respectively, that is

(3.2) GeAR-b20, %20, 0=-AlG+c20,i20

and let bar variables (x,y), (u,v) denote primal and dual optimal vectors

respectively, that is

(3.3) §=Ak-b320,%20 v=-Aa+c20, @20, cx-ba=0

Let Jec {1,2,...,n} and let I < {1,2,...,m}. Then the following

equivalences hold:
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(a1) 30,>0 == Vv&; bouncad = /30,>0; ¥(%,%), Y0 s.t. 0,>0:
% T“ TA ~
15,11, < ('R - ba)/min

(a2) 3j;>0 == ¥iy bounded = /15> 0; ¥(@,0), ¥& s.t. §>0:
i gll, < (T8 - bTa)/min 5,

(b1) J§J>0¢-Vv bounded ~<; J>o; ¥(v,d), v& s.t. §J>°:

19501, < (s - ooV /mtn $
Iy =(c'%x-b'li)/min %5 ed

(b2) 30, >0 *== vy, bounded ==+ /3IG,>0; V(y,X), ¥i s.t. G,>0:
I 1 I I
191l < ("% - bTd)/min G, |

(c1) ;9J>o,ﬁl>o~v(id,yl) bounded = Jva>o.al>o;v(i.£).vﬁ s.t.9J>o. GI>0:

X3

Ta Ta A a
¥y <(c'%X-b'd)/min B5e90 01

1

(c2) J§I>0, 2J> Oﬂv(GI,FJ) bounded *= JyI>0, J>0, v(ua,a), ¥x s.t. yI>0 xJ>0:

1

VJ

<%= bT0)/min Gy 1. %y 5}
1

3.2 Corollary The quantity 1% in parts (al), (b2) and (c1) of Theorem 3.1

T

can be replaced by any upper bound o to min c¢'x s.t. Ax 2 b, x >0, while

the quantity bTG in parts (a2), (bl) and (c2) of Theorem 3.1 can be replaced

T T

by any lower bound 8 to max bu s.t. Au<c,u20.

Proof To prove the first part, set X in (al), (b2) and (c1) equal to a

solution % of (1.3a) and note that c'% = c'% < a. To prove the second part,

set 4 in (a2), (b1) and (c2) equal to a solution & of (1.3b) and note that

Ta T- 1)

-b'u=-bug-8.
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3.3 Remark When the index sets I, J are taken as singletons, the first
equivalence in each of the statements (al) to (c2) of Theorem 3.1 reduce to
Theorem 3b of Williams [11]. In [10] Williams characterizes boundedness of
components of feasible, but not optimal, points of linear constraint sets.
In [9] Williams characterizes the boundedness of the totality of all the
components (in contrast with individual components) of optimal points of
linear programs. None of Williams' characterizations contain quantitative
bounds 1ike ours.

We turn our attention now to the nonsymmetric pair of dual linear

programs
(3.4a) min ch s.t. Ax=b, x>0
(3.4b) max blu s.t. v=-Alu+c>0

and establish the following bounds for their solutions.

3.4 Theorem Assume that the dual linear programs (3.4) are both feasible
and hence both solvable. Let caret variables denote primal and dual

feasible vectors, that is
(3.5) AR =b, 820, ¢=-ATg+c20
and let bar variables denote primal and dual optimal vectors, that is

(3.6) Ak =b, K20, ¥=-Ai+c20,cx-ba=0

Let J<{1,2,...,n} and 1c{1,2,...,m}. Then the following equivalences
hold:

SO 2y N
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(al) (1) 3,> 0= (11) Y&} bounded = (111) /3i;>0; V(%.%), ¥d s.t. ¥,>0:

- TA TA
llxalllg(c X-b'd)/min Ojed

(a2) (i) 3X>0 and rows of A 1in. indep.*=(11) YU bounded
o= ({§1) /3% >0 and rows of A 1in. indep; V(u,4), ¥X>0:

Il < ARl (el +cT8 = bTa) /min %))
1<i<n

(b1) (4) ;£J>o~(11) WJ bounded *=* ({11) ;£J>o; y(v,0), ¥X s.t. 2J>o:
- TA TA A
llelllg(c X-b'd)/min %500

Proof (al): (1) *= (111): Evident.

(1) *=(11): We establish the contrapositive implication.

T

10J>0‘--A u+cg>0, (-ATy +¢Z);>0, £>0 has no solution

o= -AX - A,JzJ- 0, ¢ +c§za +n=0,x20,0¢ (z;,n) 20, has solution

(By Motzkin's theorem)

T

*e-Ax=0,cx+n=0,x20,0¢ (x;,n) 20 has solution

= (n=0) For each solution X of (3.4a), x+Xix is also a solu-
tion for any A>0, where Ax=0, ch-O, x20, 0£x,20
(n>0 excluded, because it implies (3.4a) 1s unbounded below,
which ts ruled out by primal-dual feasibility assumption)
= J unbounded ’.‘J .

T T

(1)=(ii1): cTSEz_c X =b Ta . =Ta . T

Tvibuc'xvgb

- T- - ~ «Ta
Uus=bu+x u+vaJ

2 6]

Q + IRyl min 4
Hence

- TA TA A
||xJ||] S (c'%-b'G)/min Vel

(a2): (11) *= (411): Evident.
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(1)*=(31): We shall prove the contrapositive implication.

‘i

",’; /S ~
e Rows of A 1in. dep. or lx > 0 such that Ax = b
o
ATy

*= Rows of A 1in. dep. or 0 # 112 0 has solution

ﬁ(* b'u
Fin (By Motzkin's theorem)
R ¢
A + Rows of A 1in. dep. or 0 # -A uzo, bTu = 0 has solution
*-\ (Case of -ATy 20, bTu > 0, ruled out because it implies
. ﬂ'
(3.4b) is unbounded above which is impossible by primal-dual

& feasibility assumption)

3 = For each solution U of (3.4b), U + Au is also a solution
>

N,
b1V for any A > 0 where either blu = 0, Alu=0, uf 0 or
blu=0,0#4-Alu20,

ot = ] unbounded U

T Ay L]
v~: (1)=(11i): Since ATG = ¢ - 7 and rows of A are linearly independent
4‘ }' - . -

™ it follows that u = (AAT) 1A(c-v) and hence

D¢y -1

X - T -
3 NGl < 16Ty &Il Clell, + 19l
&

b But

. baccimc®-RgcR-vRgcR- lFlly min &
s Ot 1<i<n

4
P Hence

@

; -b u) min X
. 1511, 1
‘ ~3 1<i<n
~
i and consequently
““}
[ il < 18Dl el + €287 fatn &)
<1<n
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(a3): (i1) = (111): Evident.
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(i) = (i1): We shall prove the contrapositive implication.

J3 such that %, >0, %20 and AR = b

v

J

Ay +v =0, bTuz o,v20, (T) £ 0, has solution
u

b
(By Motzkin's theorem)

=Ty +v = o, blu = 0, v20, v,#0 has solution

T T

(Case of bu>0, Alu+v=0,v>0, ruled out because

it implies (3.4b) is unbounded above which is impossible
by prima)-dual feasibility assumption)

= For each solution (u,v) of (3.4b), (u+iu, v+av) is

T

also a solution for any J\ >0 where A'u +v =0,

bTu-O.vgo.vJ#O.

= ] unbounded v7J

(1)=(i11): blagecRach-iRgcR-VRLCR- Tk
Ta - a
<c'X - ”vJ”] min X, ,
Hence
5,01, < (cTR-bTay/mn &y, O
e T T T T T L T T
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e solution 2z of the linear complementarity problem:

. : z z, < iTh/min w, *
iq, . 1= iel
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2N l-norm ”;"l of any solution point. Similarly each feasible point (x,y) >0

¢ of the primal linear program min ch subject to y = -b2>0, x>0, and
-.3 each feasible point (u v) 20 of the dual linear program max b u subject to
M v = -ATu +c20,u 3 0, provxde the following simple bounds for any primal

Ye optimal solution (x,y) and any dual optimal solution (u,v):

. z X, < (c x-b u)/mln v . z u, < (c x - b u)/mln y

~ €J is=

"l ied iel

< - R . -
o~ where J = {ilvi >0} and I = {i|yi >0}. If v >0 we have a bound on Hxﬂl,

and if y > 0 we have a bound on ”ﬁ" . In addition we show that the existence
of such numerical bounds is not only sufficient but is also necessary for the
boundedness of solution vector components for both the linear complementarity
problem and the dual linear programs.
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